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Abstract. Total structure factors, that is both Bragg and diffuse scattering, have been measured
for La1−xSrxMnO3 (x = 0.2 and 0.4) at temperatures between 15 and 1000 K by powder neutron
diffraction using the SLAD diffractometer at the Studsvik Neutron Research Laboratory. The data
have been used to simultaneously model the atomic and magnetic structures using the reverse Monte
Carlo (RMC) method. The RMC models confirm that there are local lattice distortions, involving
the O octahedra surrounding Mn ions, that disappear as T decreases through Tc (here defined as the
point of inflexion of the net magnetic moment determined from Rietveld refinement, representing
the onset of long range ferromagnetic order). The distortion referred to is away from the ‘normal’
Jahn–Teller distorted octahedron associated with Mn3+ and towards the more uniform octahedron
associated with Mn4+. It involves more than a single octahedron, so the correlation length is larger
than ∼5 Å. The models are consistent with the proposal that the distortions occur around Mn4+

ions, though it is not possible to say whether the extra charge is localized on a single Mn. They
may therefore be considered as lattice polarons. Both long range magnetic order (LRMO) and
short range magnetic order (SRMO) increase rapidly as T decreases through Tc , but SRMO also
persists above Tc . This is evidence for the existence of magnetic polarons above Tc . For the first
time we show that the SRMO is correlated with the local lattice distortion, a higher ferromagnetic
correlation being associated with shorter Mn–Mn distances. Lattice and magnetic polarons are
therefore one and the same.

1. Introduction

Colossal magnetoresistance (CMR) materials have been known about for 40 years [1] but
recently interest has been revived by the discovery that the CMR effect could be obtained in
thin films of such materials [2], giving rise to the possibility of technological applications.
Zener [3] suggested that ferromagnetism arises due to spin hopping between sites if the core
spins of the initial and final states are sufficiently aligned. This type of interaction was termed
double exchange. However, Millis et al [4, 5] have shown theoretically that double exchange
alone is not sufficient to explain the extreme values of magnetoresistance that can be obtained,
and have proposed that a strong electron–phonon coupling is also required. A number of
proposals have been made for the origin of this coupling, including lattice polarons [6] and
dynamic Jahn–Teller distortions [7].

The (time) average crystal structure of LaMnO3 is the perovskite structure, but with
a Jahn–Teller distortion of the oxygen octahedra surrounding Mn. Doping with either Ca
or Sr in the region x ∼ 0.3 produces an orthorhombic or rhombohedral structure with no
long range Jahn–Teller distortion. Neutron powder diffraction (Bragg scattering) studies have
shown evidence of small changes in the structure near the magnetic ordering temperature, Tc,
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for example variations in the lattice parameters [8], the mean square displacements of oxygen
atoms [9] or the Mn–O bond lengths [10], which may be indicative of local structural distortions.
However, the only techniques that have the possibility to directly probe the local atomic
structure are total scattering, that is both Bragg and diffuse scattering, sometimes called pair
distribution function (PDF) analysis, or EXAFS. Billinge et al [6] have studied La1−xCaxMnO3

by PDF analysis. They find that the second peak in the PDF, which is predominantly due
to near neighbour O–O correlations, decreases in height rapidly as temperature increases
through Tc. They have interpreted this as evidence of small polaron formation involving a
uniform contraction of oxygen octahedra around Mn4+ ions above Tc. At low temperature,
in the metallic state, all Mn ions have only the same average charge and so there is no local
distortion. Louca et al [7], using precisely the same methodology but studying La1−xSrxMnO3,
have found that the first peak in the PDF due to Mn–O correlations is split into two peaks at
1.95 and 2.25 Å (the second being smaller), which is interpreted as evidence of a strong local
Jahn–Teller distortion. The same distortion appears to be evident both above and below Tc.
However, Hibble et al [11] have recently reported the absence of such distinct local correlations
in La0.7Sr0.3MnO3 and La1−xCaxMnO3 (x = 0.2, 0.3); they only find broad wings at the tail
of the first Mn–O PDF peak. Also, a distortion of this magnitude should be readily measurable
by Mn EXAFS, but most EXAFS results [12–14] are interpreted in terms of a single near
neighbour MnO distance. Some evidence has been found of a splitting [12] but the peaks are
of similar intensity and at 1.83 and 2.06 Å, i.e. different from those found by Louca et al [7].
Small angle neutron scattering (SANS) results have been analysed in terms of a (magnetic)
correlation length typically 10 Å or longer (for samples with large CMR behaviour) [15, 16].
More recent theory [17] suggests that the correlation length for the electron phonon coupling
above Tc is much longer, of the order of 30 (cubic) lattice parameters; in this case one would
not expect to see distinct correlations on a very local atomic scale.

The results appear at present to be rather inconsistent. If the local Jahn–Teller distortions
persist below Tc then this seems incompatible with uniform oxygen octahedron contractions
around Tc. EXAFS results do not really provide information on the contraction of oxygen
octahedra, but the size of the Jahn–Teller distortion that has been proposed [7] should be quite
easily observable by EXAFS. The correlation lengths from SANS are inconsistent with those
suggested from PDF analysis. Further work is therefore required to clarify the situation.

In the present paper we report on a study of the local atomic and magnetic structures of
La1−xSrxMnO3. The technique used is reverse Monte Carlo modelling of neutron powder
diffraction data, including both Bragg and diffuse scattering [18, 19]. The technique has some
similarities to the PDF method, but also some important differences. For example, this is the
first time that the local magnetic structure has been considered; in previous work magnetic
scattering has been ignored. In addition the data are interpreted in terms of full atomic and
spin models which are consistent with all aspects of the data, not just in terms of parametric
models based on particular features.

2. Experiment

The La1−xSrxMnO3 samples were prepared by solid state reaction from stoichiometric amounts
of La2O3, SrCO3 and MnO2 in order to give the desired compositions. All starting materials
had a purity of 99.9% or higher. Before use La2O3 was dried at 900 ◦C in a flow of O2 for
12 hours. Batches of approximately 4 g were thoroughly mixed and milled, using ethanol
as a grinding aid. In all sintering steps the samples were heated in air. In the first heat
treatment they were fired as loose powders in Al2O3 crucibles at 950 ◦C for 12 hours. They
were then fired in the form of pellets at 1100, 1200 and 1300 ◦C for 30, 80 and 100 hours
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Figure 1. (a) Total structure factor, F (Q), for La1−xSrxMnO3 at ambient temperature. x = 0.2
(lower curve) and 0.4 (upper curve), successive curves being offset by 1 for clarity. (b), (c) F (Q)

for La1−xSrxMnO3 at various temperatures, successively offset by 0.1 for clarity. (b) x = 0.2;
T = 900 (lowest curve), 300, 200 and 15 K (uppermost curve). (c) x = 0.4; T = 1000 (lowest
curve), 300, 150 and 100 K (uppermost curve). The incoherent scattering cross-section (dot) and
the sum of the incoherent and theoretical paramagnetic scattering cross-sections (dash) are also
shown. The peak widths show the instrumental resolution; there is no evidence of any sample
dependent line broadening.

respectively. Between each sintering step the samples were reground and pelletized again.
Before measurement the samples were reground.

Total structure factors, both Bragg and diffuse scattering, were measured for
La0.8Sr0.2MnO3 and La0.6Sr0.4MnO3 at temperatures between 15 and 1000 K using the SLAD
diffractometer at the Studsvik Neutron Research Laboratory [20, 21]. Measurements below
and above ambient temperature used a closed cycle refrigerator and furnace respectively.
The samples were contained in thin walled vanadium cylinders of 8 mm diameter. Separate
measurements were made of the background, container and a vanadium standard. The sample
data were corrected for background and container scattering, container absorption and sample
self-absorption, multiple and inelastic scattering, and normalized to an absolute scale using
standard procedures developed for studies of liquids and amorphous materials (see e.g. [22]).
The structure factors for the two samples at ambient temperature are shown in figure 1(a)).
Figures 1(b)) and 1(c)) show the low Q part at various temperatures. Two main points should
be noted.

• The magnetic diffuse scattering can clearly be seen at the lowest Q and around the Bragg
peak at ∼1.6 Å−1, where it is most strongly peaked near Tc. In this paper we will define
Tc to be the point of inflexion in the net magnetic moment, as determined from Rietveld



4978 A Mellergård et al

refinement (see section 3.1), representing the onset of long range (ferro)magnetic order.
We estimate Tc as 310 ± 10 K for x = 0.2 and 350 ± 10 K for x = 0.4.

• At the highest temperatures the magnetic scattering is more sharply peaked towards low
Q than predicted by the paramagnetic form factor, indicating that there is still significant
short range magnetic order even at 3 Tc.

The measurements for La0.8Sr0.2MnO3 were carried out on three separate occasions, one set
below ambient temperature, one set just above and one set further above. It appears that there
is a small difference in calibration for the middle set, which causes some relative errors in
parameters derived later. However, the effect of these errors is generally clear and does not
influence the data interpretation.

3. Data modelling

3.1. Rietveld refinement

The time average lattice and magnetic structures were refined from the Bragg scattering data
by the Rietveld method using the FULLPROF program [23]. Refinements were carried out
in both rhombohedral (space group R3̄c) and orthorhombic (space group P nma) unit cells.
In the case of La0.8Sr0.2MnO3 the rhombohedral cell was clearly the preferred one. Also, the
results for La0.6Sr0.4MnO3 were more consistent for R3̄c and these are reported here. The
lattice parameters are very consistent with previously published results [24, 25] and show a
small discontinuity in the variation of a around Tc. Figures 2(a)) and b) show the Mn–O
bond length, dMnO and the Mn–O–Mn bond angle. These are also found to be consistent with
previous work. Figure 2(d)) shows the mean square oxygen displacement, 〈u2

O〉. It is found
that for La0.8Sr0.2MnO3 this decreases slightly more rapidly as T decreases through Tc, an
effect which has been predicted theoretically and observed by others [4, 5, 9, 11]. A similar
effect is not observed for La0.6Sr0.4MnO3 where the CMR behaviour is weaker.

While the magnetic structure has been refined, the main purpose of this was to make
an initial determination of the magnetic moment and to provide a starting point for RMC
modelling. We have not yet attempted to analyse the average magnetic structure in detail and
so no results will be reported here. The average moment is shown in figure 2(c)). At low
T this is slightly higher than reported by others [25] but is consistent with the RMC model
results (see below), which are consistent with both the magnetic Bragg and diffuse scattering
as determined on an absolute scale, so we believe that the present result is accurate.

3.2. Reverse Monte Carlo (RMC) modelling

The instantaneous lattice and magnetic structures have been modelled by the RMC method
using the RMCPOW program. This has been described in detail elsewhere [18, 19]. In Rietveld
refinement the time average crystal structure of a material is represented by a set of parameters
describing e.g. the lattice vectors, the average positions of atoms within the unit cell, thermal
factors representing the average displacements of atoms from these average positions etc. These
parameters are determined by fitting to a powder diffraction pattern, but using the elastic Bragg
scattering data only. In RMCPOW the ‘instantaneous’ crystal structure is represented by a
large configuration (model) containing thousands of atoms, typically that is tens or hundreds of
individual unit cells. The configuration cell is therefore a supercell of the crystallographic unit
cell. The positions of the individual atoms within the model are modified by random (Monte
Carlo) processes in such a way as to improve the agreement between the diffraction pattern
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Figure 2. Parameters describing the average crystal structure, obtained by Rietveld refinement
(open symbols) and from the RMC models (closed symbols). La0.8Sr0.2MnO3 (squares),
La0.7Sr0.3MnO3 (up triangles) [25] and La0.6Sr0.4MnO3 (circles). Vertical arrows indicate Tc .
(a) Mn–O bond length; (dMnO ) (b) Mn–O–Mn bond angle; (c) net magnetic moment per Mn atom
(µ) and (d) mean square displacements of O atoms, 〈u2

O 〉, successively offset by 0.005 for clarity.

calculated from the model and that measured experimentally. However now the diffraction
pattern includes both elastic scattering and (energy integrated) diffuse scattering.

Each model consisted of a supercell of 8×8×8 rhombohedral crystal unit cells (i.e. 5120
atoms and 1024 spins), with periodic boundary conditions to obtain an effectively infinite
system. The model dimensions were then fixed, with the initial lattice parameters being taken
from the Rietveld refinement results. The initial atomic positions for the lowest temperature
model were also taken from Rietveld refinement. The final configuration at each temperature
was then taken as the starting point for modelling of data for the next highest temperature. In
RMCPOW the total structure factor is calculated directly from the model, with the unit cell
Bragg peaks representing the sample Bragg peaks and the (smoothed) supercell Bragg peaks
representing the sample diffuse scattering (the experimental resolution is taken into account).
Atoms and spins are moved/rotated by small random amounts in order to improve the fit
between calculated and measured structure factors. The eventual result should be a model of
the instantaneous atomic and magnetic structures that agrees with the data within experimental
errors.

Figure 3 shows examples of the total structure factors and fitted models, with the fit
split into its four separate components, i.e. atomic Bragg and diffuse scattering and magnetic
Bragg and diffuse scattering. The quality of fit is comparable to that achieved by Rietveld
refinement for the same data. Here it is useful to stress the differences between the methods.
The Rietveld method fits the Bragg scattering only to refine an initial model of the (time)
average structure within a single unit cell with a specified symmetry. The structure is defined
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Figure 3. Total structure factors, F (Q), for La0.8Sr0.2MnO3 at 325 K (left) and 15 K (right).
Experimental data (solid curve), RMC fit (dash curve), lattice diffuse scattering (dot curve), total
magnetic scattering (dash–dot curve) and magnetic diffuse scattering (dash–dot–dot curve).

in terms of a relatively small number of parameters, e.g. cell constants, atomic positions and
thermal factors, which are mathematically correlated but not (normally) subject to physical
constraints. RMCPOW fits both the Bragg and diffuse scattering (in this case atomic and
magnetic) to produce a model of the instantaneous structure defined in terms of individual
atomic positions (and spins). The symmetry of individual unit cells is not defined, but only
the shape of the overall model. The RMC model has many more parameters than Rietveld (i.e.
3 × 5120 parameters defining the atomic positions) and it might then be considered that any
data set could be fitted since this is much larger than the number of data points (of order 1000).
However, the RMC parameters are constrained and highly correlated, for example atoms have
a finite size defined in terms of minimum atomic closest approach distances, which is why we
do not in fact obtain a perfect fit to the data despite the high parameter/data ratio. In the present
case the use of small atomic moves and appropriate fitting criteria also means that the resulting
structure is a refinement of the initial structure, and not an independent determination of the
structure.

Results for the average atomic structure within the unit cell from Rietveld refinement
and RMC are compared in figure 2. In order to compare ‘like with like’ the average atomic
distribution within the nominal unit cell in the RMC models has been subject to the same
symmetry operations as the Rietveld models (this makes only a small difference). RMC and
Rietveld results are very similar; some variation should be expected since RMC must be affected
by the fact that both Bragg and diffuse scattering are fitted. The RMC models are slightly more
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disordered at low T (this is a known feature of RMC methods) and the Rietveld models are
slightly more disordered at high T (where Rietveld tends to couple resolution and thermal
parameters but RMC is constrained by the modelling of both Bragg and diffuse scattering).
The RMC models reproduce the small cusps in the dMnO and 〈u2

O〉 at Tc for La0.8Sr0.2MnO3.
Therefore it may be considered that in terms of the average atomic structure within the unit
cell the RMC models are consistent with previously published results.

4. Discussion

4.1. Atomic structure

While the consistency with Rietveld refinement has been stressed, RMC modelling has the
advantage that one can also calculate local atomic correlations from the models. Figure 4
shows the partial pair correlation functions, gij (r), for O–O and Mn–O pairs, and the total pair
correlation function

G(r) =
∑
i,j

cicj bibj (gij (r) − 1) (1)

which is equivalent to the PDF as defined in various ways by other authors (e.g. 9, 10). ci and
bi are the concentration and coherent neutron scattering length of atom type i. Note that Mn
has a negative scattering length, so the first peak in G(r) is negative. As T increases the first
peaks in gMnO(r) and gOO(r) (due to near neighbour atoms) decrease in height and broaden,
as would be expected. There is no evidence at any T of a separately resolved peak in gMnO(r)

at 2.25 Å, as found by Louca et al [7], or of a peak at 1.83 Å as found from EXAFS by Tyson
et al [12], though the wings do encompass both these distances. Good consistency is on the
other hand found with the results of Hibble et al [11].

Figure 5 shows the mean positions, 〈rij 〉, and variances, 〈σ 2
ij 〉 of the first peaks in gMnO(r)

and gOO(r). If there were no correlations between the positions (motions) of neighbouring
atoms these would be equal to the bond lengths, dij , and the sum of thermal parameters,
〈u2

i 〉 + 〈u2
j 〉, as derived from the average crystal structure; in fact the results are rather close

though 〈σ 2
ij 〉 are in general slightly larger. 〈rMnO〉 and 〈σ 2

MnO〉 for x = 0.2 clearly increase
faster around Tc than would be expected from the slope of either the low or high T behaviour.
〈rOO〉 shows only a very weak change at Tc. The behaviour of 〈σ 2

OO〉 at Tc is harder to judge
since this is somewhat affected by small calibration errors for a set of runs comprising four T

points just above Tc. (O has the highest concentration and scattering length and hence ends
up being most strongly coupled to the overall model dimensions. Small inconsistencies in
the calibration at different angles can be accommodated by slight additional distortions in the
oxygen structure.) However, from extrapolation of the high T behaviour it is clear that 〈σ 2

OO〉
also shows an anomalous increase at Tc, larger than that for 〈σ 2

MnO〉. The results for x = 0.4
(not shown) show no such obvious behaviour associated with Tc.

4.2. Magnetic structure

In order to model the magnetic structure we have used only a single value of the magnetic
moment for all Mn ions. Below Tc, where the system is metallic, this is clearly valid (as a
classical model). Above Tc it may be considered that we should use different moments for
Mn3+ and Mn4+. However, this really depends on the final conclusion of the study. If the
lattice distortions are highly localized then this might be interpreted as evidence for different
local charges. However, if the distortions, and hence the charge carriers, are distributed over
several Mn sites then the average moment model is not a bad approximation. Given that the
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Figure 4. Pair correlation functions for La0.8Sr0.2MnO3. (a) gOO(r) and (b) gMnO(r) at all
temperatures measured. T increases as peak height decreases. (c) G(r) at 15 K (solid curve),
250 K (dash curve) and 325 K (dot curve). (d) Gmag(r) is the Fourier transform of the total
magnetic structure factor (as shown in figure 3) at 15 K (solid curve) and 325 K (dot curve).
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Figure 5. (a) Variance, 〈σij 〉, and (b) mean peak position, 〈rij 〉, for the first peaks in gOO(r) (up
triangle) and gMnO(r) (down triangle) for La0.8Sr0.2MnO3. The dashed curves are spline fits to
the data points. The solid curves are quadratic polynomial fits to the data points above Tc . Vertical
arrows indicate Tc .

RMCPOW program can not yet deal with different moments that must be allowed to move
between different magnetic sites, we have necessarily had to hope that an average moment
model will suffice.

As noted earlier, we have not analysed the average magnetic structure in any detail. We
can interpret the average atomic structure from the RMC model based on that derived from
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Rietveld refinement. However, the magnetic unit cell may be doubled, for example, so it is
not immediately obvious what basis to use. For La0.6Sr0.4MnO3 at low T there is a magnetic
scattering peak at Q ∼ 0.8 Å−1 that could be consistent with an orthorhombic structure, but
refining the lattice structure on this basis gives physically unrealistic thermal factors. In fact
the magnetic diffuse scattering of the RMC model has managed to reproduce the integrated
intensity of this peak, though not the narrow width (because of the inconsistency with the
overall symmetry of the RMC model). This aspect of this type of RMC modelling requires
further development.

Here we will concentrate on simple aspects of the change in magnetic structure through
Tc. The average magnetic moment is shown in figure 2(c)); this agrees well with the results
of Rietveld refinement. At high T we find that there remains a small net magnetization in the
RMC models. The structure factors (figure 1) show that the magnetic diffuse scattering at high
T is different from that expected for purely paramagnetic behaviour, indicating significant
remaining short range magnetic correlations. It is possible that if these correlations are on a
similar length scale to the RMC model there may be some finite size effect.

Figure 6 shows the spin–spin correlation function for La0.8Sr0.2MnO3, that is the average
angle (cosine) between spin pairs as a function of separation, 〈cos θ(r)〉. This is obviously
only defined at separations where there are Mn atoms, so gMnMn(r) is also shown. 〈cos θ(r)〉
is almost flat at low T , indicating long range ferromagnetic order. The average value, ∼0.61
for x = 0.2, implies an average projection relative to the net magnetization direction (i.e. the
lattice) 〈cos θl〉 ∼ (0.61)1/2 = 0.78. This is consistent with the fact that for an average spin
S = 0.8 × (4/2) + 0.2 × (3/2) = 1.9 we would expect 〈cos θl〉 = S/(S(S + 1))1/2 = 0.81.
〈cos θ(r)〉 is zero at high T at large r , indicating that there is no long range magnetic order
(LRMO), but rises at low r indicating significant remaining short range magnetic order
(SRMO). The SRMO appears to extend out to about 8–10 Å. Around Tc the large r value
is finite and the low r rise remains, with perhaps a slightly longer correlation length. It
should also be noted that at Tc and above there is a definite trend for the values of 〈cos θ(r)〉
within the first few individual peaks in gMnMn(r) to rise towards lower r , indicating a stronger
ferromagnetic interaction for Mn–Mn pairs that are slightly closer.

As a measure of the LRMO we have used the average value of 〈cos θ(r)〉 between 16 and
18 Å, and as a measure of SRMO the average value corresponding to the first peak in gMnMn(r)

(∼3.9 Å). These are shown as a function of T in figure 7. Obviously both SRMO and LRMO
show a clear transition at Tc. As noted above, the LRMO decreases to zero above Tc while
the SRMO remains finite. The increase in magnetic order as T decreases through Tc almost
exactly matches the decrease in lattice distortion. To illustrate this we also show in figure 7
the function

l(T ) = 0.6

(
1 − 〈σ 2

MnO(T )〉 − 〈σ 2
MnO(T )〉f it

〈σ 2
MnO(T )〉 − 〈σ 2

MnO(T )〉f it

)
(2)

where fit indicates the appropriate solid curve in figure 5 (that is a quadratic polynomial fit to
the high T behaviour of 〈σ 2

MnO(T )〉). The factor 0.6 is purely used for graphical scaling.
In the present case powder diffraction data provide no strong information on the

magnetization direction below Tc relative to the lattice. We have tested this by rotating the
whole magnetic structure and recalculating the structure factor, and find little change. This
aspect should therefore be studied with single crystals.

4.3. CMR behaviour

We should now consider if we can derive a self-consistent explanation for the changes in
lattice and magnetic structure in the RMC models. Firstly let us consider the lattice effects.
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Figure 6. Spin correlation functions for La0.8Sr0.2MnO3. (a) Pair correlation function, gMnMn(r),
i.e. the function describing the positional correlations of spins. T = 15 K. (b) Average angle cosine
between Mn–Mn spin pairs as a function of separation, 〈cos θ(r)〉, i.e. the function describing the
angular correlation of spins. T = 15 (square), 200 (circle), 300 (up triangle) and 900 K (down
triangle).

Imagine that a single Sr2+ is substituted for La3+ in LaMnO3, thus injecting a single hole, and
let us further assume that this hole is localized as a single Mn4+ ion. Because of the higher
positive charge (compared to Mn3+) this will attract the surrounding O2− ions, producing a
local lattice distortion. Note that the distortion referred to here is away from a Jahn–Teller
distortion, which is the ‘normal’ situation in LaMnO3, and towards a uniform octahedron.
However, the more uniform octahedron is coupled with the rest of the lattice so there must be
some strain field at longer distances. We would then expect to find Mn–O bond lengths within
the Mn4+ octahedron that were slightly longer than expected for a ‘pure’ Mn4+ oxide (1.91 Å),
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Figure 7. Parameters describing the short range magnetic order (SRMO) and long range magnetic
order (LRMO) in (a) La0.6Sr0.4MnO3 (circles) and (b) La0.8Sr0.2MnO3 (squares). Open symbols:
〈cos θ(16 < r < 18 Å)〉 (LRMO). Solid symbols: 〈cos θ(3 < r < 4.5 Å)〉 (SRMO). The crosses
show the function l(T ) (equation (2)) describing the local lattice distortion. Lines are guides to the
eye. Vertical arrows indicate Tc .

and in the surrounding octahedra bond lengths slightly shorter and longer than expected for
LaMnO3 (1.925 and 2.225 Å). There will therefore be a range of Mn–O bond lengths between
∼1.9 Å and 2.25 Å, not just bond lengths due to Mn4+–O and Mn3+–O.

As more Sr2+ is added, the distribution of Mn4+ will be determined by a number of
competing factors. Coulomb repulsion will tend to separate Mn4+, but the strain fields will
be reduced if they cluster. There will be some preference for Mn4+ to be in the vicinity of
the (static) Sr2+ defects. These charge (i.e. electronic) effects will of course couple to the
magnetic interactions. If reduction of the strain field strongly dominates, and Mn4+ cluster,
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then different bond lengths for Mn3+–O and Mn4+–O might be resolved in gMnO(r). However,
if Coulomb repulsion dominates then there will be a whole range of bond lengths in between
those for Mn3+–O and Mn4+–O and gMnO(r) will be a single broad peak—this latter situation
is consistent with our models (and the data of Billinge et al [6] and Hibble et al [11]). If holes
hop rapidly through the lattice at high T then this motion will lead to additional blurring of the
bond length distribution. It should also be noted that at particular x the competing interactions
could lead to particular geometrical ordering, e.g. Mn3+–Mn4+ charge ordering at x = 0.5.

Given a random distribution of Mn4+ (not the same as a uniform distribution) we expect
a situation at x ∼ 0.2 where the strain fields of all the Mn4+ overlap and form a percolating
network (the bond percolation threshold for a cubic lattice is 0.25). Given self-similarity
arguments this would actually be independent of the precise extent of the strain field if the
overall symmetry is close to cubic. The LRO of the Mn3+ Jahn–Teller distorted octahedra will
then be broken, leading to a transition in the crystallographic symmetry from orthorhombic to
rhombohedral. This is precisely what is observed.

In the discussion above we have started from the premise that the holes (Mn4+) are
localized, i.e. the sample is an insulator at low T and may exhibit polaronic conduction
at high T due to hopping of holes (and their accompanying lattice distortions). However,
if we alternatively assume that the holes are completely delocalized, i.e. the system is
metallic/semiconducting, then each Mn will have only some average charge dependent on
x—hence there will be a single average Mn(3+x)+–O bond length broadened by normal thermal
vibrations. In this case the width of the peak in gMnO(r) will be narrower relative to the case
for localized holes. This is precisely what is observed as T decreases through Tc for x = 0.2,
that is 〈σ 2

MnO〉 decreases at the insulator–metal transition. 〈rMnO〉 changes only slightly since
the macroscopic charge balance does not change at Tc, only the local charge balance. Although
the discussion has so far concentrated on 〈σ 2

MnO〉 we would also expect a change in 〈σ 2
OO〉.

In fact "〈σ 2
OO〉1/2/〈rOO〉 ≈ "〈σ 2

MnO〉1/2/〈rMnO〉 (where " indicates the ‘anomalous’ change
through Tc), as would be expected from simple geometrical arguments.

From the above arguments we can conclude that the RMC models are consistent with the
idea that conduction in La1−xSrxMnO3 at high T is due to polaron hopping. The ‘size’ of
the polaron is certainly larger than a single Mn–O octahedron since, as indicated, the strain
field must be more widely distributed. Because of the distribution of bond lengths in the strain
field, and the electron–lattice coupling, one would expect some spreading of the local charge
distribution, though this may depend on the coupling to the spin state. At the highest T we
have found that the low Q diffuse magnetic scattering is still distinctly different from the
expected paramagnetic form factor (figure 1). It is impossible to obtain any reliable functional
fit (e.g. Lorentzian) to the shape of the low Q magnetic scattering (the lowest Q value is
too large), but we have checked that our results are consistent with the SANS results of De
Teresa et al [15, 16] which show a correlation length of the order of 6 Å at T = 4 Tc for
(La0.75Tb0.25)0.75Ca0.25MnO3; this is also consistent with the low r behaviour of 〈cos θ(r)〉 as
shown in figure 6. Lynn et al [26] have derived a correlation length of the order of 10 Å for
La0.67Ca0.33MnO3 at T = Tc based on quasi-elastic neutron scattering from spin fluctuations.
We therefore conclude that a ‘typical’ polaron involves at least one Mn–O octahedron and
its six nearest neighbour octahedra, and that this is both a lattice and a magnetic polaron [27]
(i.e. involving a lattice distortion due to the additional local charge and short range magnetic
order).

Most of the evidence for identifying a lattice and a magnetic polaron as one coherent
‘object’ is indirect, although nevertheless convincing. For x = 0.2 the fractional change in
〈σ 2

MnO〉 through Tc is ∼1/3, i.e. the ‘normal’ thermal vibrations are larger than the polaronic
distortion, so it is difficult to unambiguously ‘find’ a lattice polaron within the RMC model.
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Figure 8. Spin–spin angle distribution function p(cos θ(r), r) for La0.8Sr0.2MnO3 at 325 K. Only
distances corresponding to Mn–Mn near neighbours, 3.4 < r < 4.4 Å, are shown.

Hence it is also difficult to directly correlate the SRMO around an individual spin with the local
atomic arrangement; we would need considerably better statistics and to know what particular
many body correlation function to calculate. However, direct evidence comes from the slope
of 〈cos θ(r)〉 at distances within the first peak of gMnMn(r) (figure 6). The fact that for Tc and
above 〈cos θ(r)〉 is clearly higher (despite the poor statistics) at 3.5 Å than at 4.2 Å indicates
that on average local spin clusters with a higher degree of SRMO occupy slightly less volume,
which is consistent with a local lattice contraction around Mn4+. We reiterate here that the
distortion referred to is away from the ‘normal’ Jahn–Teller distorted octahedron associated
with Mn3+ and towards the more uniform octahedron associated with Mn4+.

Figure 8 shows the full (cos θ(r)) distribution for near neighbour Mn atoms in
La0.8Sr0.2MnO3 at 325 K (near Tc). The main peak occurs at short distances and close to
cos θ = 1, i.e. ferromagnetic ordering. However, there is also clearly a weaker peak at longer
distances close to cos θ = −1, i.e. antiferromagnetic ordering. This is consistent with a
situation where the coupling is antiferromagnetic around lower charge cations, e.g. Mn3+, and
ferromagnetic around higher charge cations, e.g. Mn4+, and the Mn–O bond length is reduced
around the higher charge cations.

Application of a magnetic field to samples with x ∼ 0.17 at ambient temperature can
cause a transition from the (low T , zero field) orthorhombic structure to the (high T , zero
field) rhombohedral structure [28, 29]. At constant T the same transition also occurs as a
result of increasing x, i.e. increasing the average Mn charge. This is consistent with our
results. Application of a magnetic field would tend to align spins and hence, via the spin–
lattice coupling (as shown in figure 8) decrease the local Mn–O bond length, equivalent to
increasing the Mn charge.
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4.4. Consistency with other work.

In the interpretation of their PDF Louca et al [7] have used only three parameters; these are the
positions of the peaks observed in G(r) at ∼1.95 and ∼2.25 Å and the area of the 1.95 Å peak,
but not that of the 2.25 Å peak (the latter overlapping with O–O and La–O contributions). The
peak positions are interpreted as showing two distinct bond lengths in Jahn–Teller distorted
O octahedra, with the area of the first peak then giving information on the number of such
distorted octahedra. The peak positions change slightly with composition/temperature but this
has not been interpreted. For x = 0 the Mn–O coordination at 1.95 Å is ∼4, implying a
coordination of 2 at 2.25 Å. This is the expected result if all Mn ions are Mn3+, i.e. four shorter
and two longer Mn–O bonds per octahedron. At x = 0.4 the coordination at 1.95 Å is ∼6,
implying a disappearance of all distorted octahedra. The fact that the same lattice distortion
is observed both above and below Tc is referred to by the authors themselves as ‘peculiar
behaviour’.

If our G(r) is integrated over the same r ranges as the PDF of Louca et al [7] then the
coordination numbers derived are very similar, even though we do not resolve separate peaks
at 1.95 and 2.25 Å. It might be argued that this lack of resolution is due to the fact that our Q

range (10 Å−1) is significantly shorter than that of Louca et al [7] (40 Å−1), giving reduced
real space resolution. However, this does not hold since we have used an inverse method of
analysis, and we have fully treated the Q space resolution (which also has a detrimental effect
on real space resolution), whereas Louca et al [7] have not. In addition the width of the peak
in our gMnO(r) is consistent with Rietveld refinement (both our results and those of other
workers).

There are a number of signs that suggest that in fact the resolution of a separate peak at
∼2.25 Å in the PDF of Louca et al [7] is due to some form of Fourier transform truncation effect,
arising from either small systematic or statistical errors (we have confirmed this possibility by
numerical tests). Firstly the width of the PDF peaks is slightly narrower than would be expected
just from the Q range, without even including thermal effects. Secondly there are also, in some
cases, peaks/shoulders resolved at ∼1.8 Å, i.e. on the opposite side of the main (1.95 Å) peak
and at ∼2.15 Å, and these are both positive (which should be physically impossible given the
negative scattering length of Mn) and of similar magnitude to the 2.25 Å peak. Finally the
PDFs of Hibble et al [11] for La1−xSrxMnO3, obtained from pulsed neutron data ranging out
to 50 Å−1, do not show any distinct peak at 2.2 Å. Instead their data show wings similar to our
results.

The RMC models seem quite consistent with the PDFs of Billinge et al [6], though their
results are for Ca doping rather than Sr doping so some differences might be expected (Ca
doping produces a larger CMR effect). For example, we find that 〈σ 2

OO〉 for (Sr) x = 0.2
changes by ∼30% through Tc, while they conclude a width change of ∼20% from the change
in the second peak height of the PDF for (Ca) x = 0.21 (but note that G(r) also has a
contribution from gLaO(r) at this distance). Their interpretation of this result in terms of a
uniform contraction of O octahedra around Mn4+ ions, of the order of 0.1 Å O displacement,
is not inconsistent with the changes in our models if it is viewed as some form of average
representation of the structural change.

Another factor that should be considered is magnetic scattering. Billinge et al [6] and
Louca et al [7] have assumed that the transform of the magnetic scattering will only contribute
at higher r , around the position of the first peak in gMnMn(r) (3.9 Å). However, because of
the magnetic form factor, the magnetic scattering contributes at all r . From the RMC models
we can calculate the magnetic scattering intensity in Q space, and hence are able to perform
a direct Fourier transform to r space; the results are shown in figure 5. The change in the
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amplitude of Gmag(r) with temperature at 1.95 and 2.75 Å is ∼10% of the change in peak
height of G(r). While this introduces a small, though not insignificant error it should be noted
that the apparent change in magnetic scattering contribution can be significantly increased
if the minimum Q value of the original data is higher, e.g. ∼1 Å−1. Note that Gmag(r) is
not in itself a physically meaningful correlation function because of the Q dependence of the
magnetic form factor and the vector nature of the magnetic moment; it is simply the direct
Fourier transform of the magnetic contribution to the structure factor. For this reason Gmag(r)

is non-zero at small r , for example.
It is not so straightforward to compare our results with those of EXAFS since the methods

of analysis are somewhat different [12–14]. However, two points can be noted. The shape of
the first peak in gMnO(r) is not exactly Gaussian, particularly above Tc. It would therefore be
possible to interpret this as indicating more than one Mn–O distance by fitting of one or more
Gaussians. Secondly any EXAFS analysis may be complicated by the fact that the electronic
state of the Mn ions is clearly coupled to the local atomic arrangement, and hence the EXAFS
signal will be determined by a convolution of both these effects. This may lead to misleading
results if a single electronic state is actually assumed.

5. Conclusions

The first point to be made is that the RMC configurations, i.e. the atomic coordinates and
spin vectors, are obtained directly from modelling of the experimental data. The results are
therefore entirely independent of any prior information or view of how the system ‘should’
behave. In interpreting the configurations we have also tried to be as independent as possible.
Our conclusions (for x = 0.2 and 0.4) are as follows:

• Our results and RMC models are consistent with other crystallographic studies (e.g.
[24, 25]) in terms of the time average crystal structure, and the PDF results of Billinge
et al [6] and Hibble et al [11] in terms of the local structure.

• The RMC models confirm that there are local lattice distortions, involving the O octahedra
surrounding Mn ions, that disappear as T decreases through Tc. The distortion referred
to is away from the ‘normal’ Jahn–Teller distorted octahedron associated with Mn3+ and
towards the more uniform octahedron associated with Mn4+.

• The distortion is found to involve more than a single octahedron, so the correlation length
is larger than ∼5 Å.

• The models are consistent with the proposal that the distortions occur around Mn4+ ions,
though it is not possible to say if the extra charge is localized on a single Mn. They may
therefore be considered as lattice polarons,

• Both LRMO and SRMO increase rapidly as T decreases through Tc, but SRMO also
persists above Tc. This is evidence for the existence of magnetic polarons above Tc.

• The SRMO is correlated with the local lattice distortion, with evidence that a ferromagnetic
correlation is associated with shorter Mn–Mn distances and antiferromagnetic correlation
with longer distances. Lattice and magnetic polarons are therefore one and the same.

While many of these effects have also been concluded by other authors, this is the first time
that they have been combined into a single model, and the first time that direct evidence has
been obtained for the coupling of lattice and magnetic polarons. The results suggest that it
would be interesting to extend the study of this coupling both to lower x, where the system
is no longer metallic at low T , and to the region around the ferromagnetic–antiferromagnetic
transition at x = 0.5.
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